Discrete matrix factorization cross-modal hashing with multi-similarity consistency

Author:

Li Yiru,Hu Peiwen,Li Ying,Peng Shouyong,Zhang Xiaofeng,Yue Jun,Yao Tao

Abstract

AbstractRecently, matrix factorization-based hashing has gained wide attention because of its strong subspace learning ability and high search efficiency. However, some problems need to be further addressed. First, uniform hash codes can be generated by collective matrix factorization, but they often cause serious loss, degrading the quality of hash codes. Second, most of them preserve the absolute similarity simply in hash codes, failing to capture the inherent semantic affinity among training data. To overcome these obstacles, we propose a Discrete Multi-similarity Consistent Matrix Factorization Hashing (DMCMFH). Specifically, an individual subspace is first learned by matrix factorization and multi-similarity consistency for each modality. Then, the subspaces are aligned by a shared semantic space to generate homogenous hash codes. Finally, an iterative-based discrete optimization scheme is presented to reduce the quantization loss. We conduct quantitative experiments on three datasets, MSCOCO, Mirflickr25K and NUS-WIDE. Compared with supervised baseline methods, DMCMFH achieves increases of $$0.22\%$$ 0.22 % , $$3.00\%$$ 3.00 % and $$0.79\%$$ 0.79 % on the image-query-text tasks for three datasets respectively, and achieves increases of $$0.21\%$$ 0.21 % , $$1.62\%$$ 1.62 % and $$0.50\%$$ 0.50 % on the text-query-image tasks for three datasets respectively.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3