Sentence part-enhanced BERT with respect to downstream tasks

Author:

Liu Chaoming,Zhu WenhaoORCID,Zhang Xiaoyu,Zhai Qiuhong

Abstract

AbstractBidirectional encoder representations from transformers (BERT) have achieved great success in many natural language processing tasks. However, BERT generally takes the embedding of the first token to represent sentence meaning in the tasks such as sentiment analysis and textual similarity, which does not properly treat different sentence parts. Different sentence parts have different levels of importance for different downstream tasks. For example, main parts (subject, predicate, and object) play crucial roles in textual similarity calculation, while secondary parts (adverbial and complement) are more important than the main parts in sentiment analysis. To this end, we propose a sentence part-enhanced BERT (SpeBERT) model that uses sentence parts with respect to downstream tasks to enhance sentence representations. Specifically, we encode sentence parts based on dependency parsing and downstream tasks, and extract embeddings through a pooling operation. Furthermore, we design several fusion strategies to incorporate different embeddings. We evaluate the proposed SpeBERT model on two downstream tasks, sentiment classification, and semantic textual similarity, with six benchmark datasets. The experimental results show that our model achieves better performance than competitor models.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Reference33 articles.

1. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

2. Devlin J, Chang M-W, Lee K, Toutanova KN (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol 1 (Long and Short Papers), pp 4171–4186

3. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV (2019) Xlnet: Generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol 32

4. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692

5. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, vol 30, pp 5998–6008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3