Developing sequentially trained robust Punjabi speech recognition system under matched and mismatched conditions

Author:

Bawa Puneet,Kadyan Virender,Tripathy Abinash,Singh Thipendra P.

Abstract

AbstractDevelopment of a native language robust ASR framework is very challenging as well as an active area of research. Although an urge for investigation of effective front-end as well as back-end approaches are required for tackling environment differences, large training complexity and inter-speaker variability in achieving success of a recognition system. In this paper, four front-end approaches: mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC), relative spectral-perceptual linear prediction (RASTA-PLP) and power-normalized cepstral coefficients (PNCC) have been investigated to generate unique and robust feature vectors at different SNR values. Furthermore, to handle the large training data complexity, parameter optimization has been performed with sequence-discriminative training techniques: maximum mutual information (MMI), minimum phone error (MPE), boosted-MMI (bMMI), and state-level minimum Bayes risk (sMBR). It has been demonstrated by selection of an optimal value of parameters using lattice generation, and adjustments of learning rates. In proposed framework, four different systems have been tested by analyzing various feature extraction approaches (with or without speaker normalization through Vocal Tract Length Normalization (VTLN) approach in test set) and classification strategy on with or without artificial extension of train dataset. To compare each system performance, true matched (adult train and test—S1, child train and test—S2) and mismatched (adult train and child test—S3, adult + child train and child test—S4) systems on large adult and very small Punjabi clean speech corpus have been demonstrated. Consequently, gender-based in-domain data augmented is used to moderate acoustic and phonetic variations throughout adult and children’s speech under mismatched conditions. The experiment result shows that an effective framework developed on PNCC + VTLN front-end approach using TDNN-sMBR-based model through parameter optimization technique yields a relative improvement (RI) of 40.18%, 47.51%, and 49.87% in matched, mismatched and gender-based in-domain augmented system under typical clean and noisy conditions, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3