Representation learning of in-degree-based digraph with rich information

Author:

Sun YanORCID,Zhu Cun,Chen JianFu,Lan Kejia,Pei Jiuchang

Abstract

AbstractNetwork representation learning aims to map the relationship between network nodes and context nodes to a low-dimensional representation vector space. Directed network representation learning considers mapping directional of node vector. Currently, only sporadic work on direct network representation has been reported. In this work, we propose a novel algorithm that takes into account the direction of the edge with text’s attribute of the node in directed network representation learning. We then define the matrix based on in-degree of Laplacian and signless Laplacian for digraph, and it utilizes web page datasets from universities in the USA to evaluate the performance of vertex classification. We compare our algorithm with other directed representation learning algorithms. The experimental results show that our algorithm outperforms the baseline by over 20% when the training ratio ranges from 10 to 90%. We apply the in-degree-Laplacian and In-degree-signless-Laplacian to directed representation learning, which is one of the main contributions of this algorithm. Additionally, we incorporate text information through matrix completion in directed network representation learning and the experimental results show an increase in performance of up to 20% compared to the baseline, especially when the training ratio is 10%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3