ViT-UperNet: a hybrid vision transformer with unified-perceptual-parsing network for medical image segmentation

Author:

Ruiping Yang,Kun LiuORCID,Shaohua Xu,Jian Yin,Zhen Zhang

Abstract

AbstractThe existing image semantic segmentation models have low accuracy in detecting tiny targets or multi-targets at overlapping regions. This work proposes a hybrid vision transformer with unified-perceptual-parsing network (ViT-UperNet) for medical image segmentation. A self-attention mechanism is embedded in a vision transformer to extract multi-level features. The image features are extracted hierarchically from low to high dimensions using 4 groups of Transformer blocks with different numbers. Then, it uses a unified-perceptual-parsing network based on a feature pyramid network (FPN) and a pyramid pooling module (PPM) for the fusion of multi-scale contextual features and semantic segmentation. FPN can naturally use hierarchical features, and generate strong semantic information on all scales. PPM can better use the global prior knowledge to understand complex scenes, and extract features with global context information to improve segmentation results. In the training process, a scalable self-supervised learner named masked autoencoder is used for pre-training, which strengthens the visual representation ability and improves the efficiency of the feature learning. Experiments are conducted on cardiac magnetic resonance image segmentation where the left and right atrium and ventricle are selected for segmentation. The pixels accuracy is 93.85%, the Dice coefficient is 92.61% and Hausdorff distance is 11.16, which are improved compared with the other methods. The results show the superiority of Vit-UperNet in medical images segmentation, especially for the low-recognition and serious-occlusion targets.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3