State of health estimation of lithium-ion battery based on CNN–WNN–WLSTM

Author:

Yao Quanzheng,Song XianhuaORCID,Xie Wei

Abstract

AbstractAccurate and stable estimation of the state of health (SOH), which is one of the critical indicators to characterize the ability of lithium-ion (Li-ion) batteries to store and release energy, is critical in the stable driving of electric vehicles. In this paper, a novel SOH estimation method based on the aging factors of battery, which combines convolutional neural network (CNN), wavelet neural network (WNN), and wavelet long short-term memory (WLSTM) named CNN–WNN–WLSTM, is designed. The proposed CNN–WNN–WLSTM estimation scheme inherits both the fast convergence and robust stability of the WNN, as well as the ability of long short-term memory neural network (LSTM) to extract the time series features of the data; moreover, using CNN can make the proposed algorithm extract the data features from the original battery data automatically, and the WNN–WLSTM is then adopted to produce the final SOH estimation by exploiting the features from the CNN. To further speed and achieve global optimization, the RMSprop optimizer, instead of the usually used Adagrad optimizer, is chosen as the solver of the CNN–WNN–WLSTM network. Experimental results on data set from the NASA Ames Prognostics Center of Excellence show that the proposed algorithm can be commendably used for Li-ion battery health management by quantitative comparison with other commonly used machine learning methods, such as back-propagation neural network, WNN, LSTM, WLSTM, convolutional neural network–long short-term memory neural network (CNN–LSTM), and Gaussian process regression.

Funder

Heilongjiang Provincial Natural Science Foundation

Shandong Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3