Electric vehicle charging station planning with dynamic prediction of elastic charging demand: a hybrid particle swarm optimization algorithm

Author:

Bai Xingzhen,Wang Zidong,Zou Lei,Liu HongjianORCID,Sun Qiao,Alsaadi Fuad E.

Abstract

AbstractThis paper is concerned with the electric vehicle (EV) charging station planning problem based on the dynamic charging demand. Considering the dynamic charging behavior of EV users, a dynamic prediction method of EV charging demand is proposed by analyzing EV users’ travel law via the trip chain approach. In addition, a multi-objective charging station planing problem is formulated to achieve three objectives: (1) maximize the captured charging demands; (2) minimize the total cost of electricity and the time consumed for charging; and (3) minimize the load variance of the power grid. To solve such a problem, a novel method is proposed by combining the hybrid particle swarm optimization (HPSO) algorithm with the entropy-based technique for order preference by similarity to ideal solution (ETOPSIS) method. Specifically, the HPSO algorithm is used to obtain the Pareto solutions, and the ETOPSIS method is employed to determine the optimal scheme. Based on the proposed method, the siting and sizing of the EV charging station can be planned in an optimal way. Finally, the effectiveness of the proposed method is verified via the case study based on a test system composed of an IEEE 33-node distribution system and a 33-node traffic network system.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3