Abstract
AbstractData envelopment analysis (DEA) is a prominent technique for evaluating relative efficiency of a set of entities called decision making units (DMUs) with homogeneous structures. In order to implement a comprehensive assessment, undesirable factors should be included in the efficiency analysis. The present study endeavors to propose a novel approach for solving DEA model in the presence of undesirable outputs in which all input/output data are represented by triangular fuzzy numbers. To this end, two virtual fuzzy DMUs called fuzzy ideal DMU (FIDMU) and fuzzy anti-ideal DMU (FADMU) are introduced into proposed fuzzy DEA framework. Then, a lexicographic approach is used to find the best and the worst fuzzy efficiencies of FIDMU and FADMU, respectively. Moreover, the resulting fuzzy efficiencies are used to measure the best and worst fuzzy relative efficiencies of DMUs to construct a fuzzy relative closeness index. To address the overall assessment, a new approach is proposed for ranking fuzzy relative closeness indexes based on which the DMUs are ranked. The developed framework greatly reduces the complexity of computation compared with commonly used existing methods in the literature. To validate the proposed methodology and proposed ranking method, a numerical example is illustrated and compared the results with an existing approach.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献