Intentional summer flooding of an Avicennia germinans mangrove forest has a more direct effect on ammonia-oxidizing Betaproteobacteria than on Thaumarchaea

Author:

Laanbroek H. J.ORCID,Hefting M. M.ORCID,Costa O. Y. A.ORCID,Kuramae E. E.ORCID

Abstract

Abstract Aims Rotational Impoundment Management (RIM) involves summer inundation of impounded mangrove forests for mosquito management. The goal of this study was to investigate the impact of RIM on communities of aerobic ammonia-oxidizing microorganisms in Avicennia germinans dominated mangrove forest soils. Methods Soil samples were collected annually in a managed and an adjacent, non-managed impoundment before and after the start of RIM at three elevation levels with their characteristic mangrove habitats, i.e., dwarf (highest elevation), sparse and dense (lowest elevation). The ammonia-oxidizing communities were studied by qPCR and amplicon analyses based on thaumarchaeal and betaproteobacterial amoA genes. Results Temporal variations in copy numbers and assemblies of amoA gene amplicons were limited. Thaumarchaeal amoA genes increased in the dwarf and sparse habitat in the non-managed impoundment, and betaproteobacterial amoA genes increased in the dwarf habitat in the RIM impoundment. No copies of the amoA gene of Nitrospirota (comammox bacteria) were detected in either impoundment. Whereas there were no significant effects of RIM on the composition of thaumarchaeal communities, RIM affected the composition of betaproteobacterial amoA assemblies in all habitats in the RIM impoundment. Conclusions Direct consequences of RIM were reflected in changes in the composition of assemblies of amplicon sequence variants (ASVs) of ammonia-oxidizing Betaproteobacteria in all mangrove habitats of the RIM impoundment. Significant temporal changes at higher elevations in the non-managed impoundment were likely due to groundwater exchange between the impoundments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3