Water limitation intensity shifts carbon allocation dynamics in Scots pine mesocosms

Author:

Solly Emily F.ORCID,Jaeger Astrid C. H.ORCID,Barthel MattiORCID,Werner Roland A.ORCID,Zürcher Alois,Hagedorn FrankORCID,Six JohanORCID,Hartmann MartinORCID

Abstract

Abstract Background and aims Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used.

Funder

Swiss National Science Foundation

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3