Recovery after volcanic ash deposition: vegetation effects on soil organic carbon, soil structure and infiltration rates

Author:

Saputra Danny DwiORCID,Sari Rika RatnaORCID,Hairiah KurniatunORCID,Widianto ,Suprayogo DidikORCID,van Noordwijk MeineORCID

Abstract

Abstract Background and purpose Volcanic eruptions of pyroclastic tephra, including the ash-sized fraction (< 2 mm; referred to as volcanic ash), have negative direct impacts on soil quality. The intensity (deposit thickness, particle-size distribution) and frequency (return period) of tephra deposition influence soil formation. Vulnerability and subsequent recovery (resilience) of the plant-soil system depend on land-uses (vegetation and management). Few previous studies covered the whole deposition-recovery cycle. We investigated the volcanic ash deposition effects on soil properties and their recovery across land-uses on a densely populated volcanic slope. Methods We measured the canopy cover and volcanic ash thickness six years after the 2014 Mt. Kelud eruption in four land-use systems: remnant (degraded) forests, complex agroforestry, simple agroforestry, and annual crops. Each system was monitored in three landscape replicates (total 12 plots). For the soil recovery study, we measured litter thickness, soil texture, Corg, soil C stocks, aggregate stability, porosity, and soil infiltration in three different observation periods (pre-eruption, three, and six years after eruption). Results Post-eruption volcanic ash thickness varied between land-use systems and was influenced by the plots slope position rather than canopy cover. The average soil texture and porosity did not vary significantly between the periods. Surface volcanic ash and soil layers initially had low aggregate stability and limited soil infiltration, demonstrating hydrophobicity. While Corg slowly increased from low levels in the fresh volcanic ash, surface litter layer, aggregate stability, and soil infiltration quickly recovered. Conclusions Different land-use management resulted in different recovery trajectories of soil physical properties and function over the medium to long term after volcanic ash deposition.

Funder

Indonesia Endowment Fund for Education (LPDP), The Ministry of Finance, Republic of Indonesia

Universitas Brawijaya

Kementerian Riset, Teknologi dan Pendidikan Tinggi

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3