Defoliation modifies the impact of drought on the transfer of recent plant-assimilated carbon to soil and arbuscular mycorrhizal fungi

Author:

Xu TianyangORCID,Johnson DavidORCID,Bardgett Richard D.ORCID

Abstract

Abstract Aims The allocation of recent plant photosynthates to soil via arbuscular mycorrhizal (AM) fungi is a critical process driving multiple ecosystem functions in grasslands. Yet, our understanding of how defoliation modifies below-ground allocation of recent plant photosynthate and its response to drought, which is becoming more intense and frequent, remains unresolved. Methods Here we undertook a 13C pulse-labelling experiment in a mesotrophic temperate grassland to evaluate in situ how defoliation intensity modifies the transfer of recently assimilated 13C from plant shoots to roots, extraradical AM fungal hyphae, soil, and 13C-CO2 efflux (soil respiration) in response to simulated drought. Results We found that, individually, both defoliation and drought reduced initial plant 13C uptake, but when defoliation and drought were combined, we detected a significant reduction in below-ground 13C allocation to soil. Furthermore, while defoliation stimulated 13C transfer to plant roots and soil, high intensity defoliation amplified 13C-CO2 efflux relative to the amount of 13C taken up by plants. Drought stimulated 13C transfer to fungal hyphae relative to initial plant uptake. High intensity defoliation, however, suppressed both 13C enrichment of extraradical AM fungal hyphae and 13C transfer to fungal hyphae relative to initial uptake. Conclusions Our findings suggest that defoliation can reduce the transfer of recent photosynthate below-ground under simulated drought and provide new insights into how defoliation may influence grassland C allocation dynamics and cycling between plants and AM fungi in grasslands facing drought.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3