Rhizosphere models: their concepts and application to plant-soil ecosystems

Author:

Kuppe Christian W.ORCID,Schnepf AndreaORCID,von Lieres EricORCID,Watt MichelleORCID,Postma Johannes A.ORCID

Abstract

Abstract Background The rhizosphere is the influence-sphere of the root. It is a local ecosystem with complex functions that determine nutrient uptake, cycling of resources, and plant health. Mathematical models can quantitatively explain and help to understand rhizosphere complexity. To interpret model predictions and relevance of processes, we require understanding of the underlying concepts. Conceptualization of rhizosphere processes bridges mathematical modeling and experimental work and thus is key to understanding the rhizosphere. Scope We review concepts and assumptions foundational to the modeling of soil-plant-microorganism processes in the rhizosphere. Rhizosphere models are designed to simulate a plurality of components (solutes, substrates, and microorganisms). They specify components and interactions, drawing from the disciplines of soil science, botany, microbiology, and ecology. Solute transport models are applied to describe bioavailability in the rhizosphere. The root is typically a sink (e.g. nutrient uptake) or source (e.g. exudation) for one or more solutes. Microorganisms are usually described in time only, neglecting possible spatial movement. Interactions between components, e.g. chemical reactions and substrate-dependent bacterial growth rates, are usually described by coupling via reaction terms. Conclusions Rhizosphere models share concepts that we organized in a collective framework. This collective framework facilitates the development of new models. The interdisciplinary approach in which knowledge from soil ecology, botany, and soil physics are combined in rhizosphere models has proven fruitful for applications in plant and soil systems. We advocate multi-component-multi-interaction ecosystems around the root, with each component represented by an advection-diffusion-motility-reaction equation.

Funder

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3