Root capacitance measurements allow non-intrusive in-situ monitoring of the seasonal dynamics and drought response of root activity in two grassland species

Author:

Cseresnyés ImreORCID,Rajkai Kálmán,Szitár Katalin,Radimszky László,Ónodi Gábor,Kröel-Dulay György

Abstract

Abstract Background and aims In this study, the potential of non-intrusive root electrical capacitance (CR) measurements for monitoring the seasonal changes and drought response of root activity was tested on two grassland species in a climate change experiment. Methods CR was detected between a ground electrode inserted into the soil and a plant electrode attached to the stem of the perennial grass Stipa borysthenica and the biennial herb Crepis rhoeadifolia in control and drought plots throughout two growing seasons. A pilot study revealed that CR was strongly correlated with root biomass for a given time and soil water content. The effect of changing soil water content on the measured CR value was accounted for by means of species-specific experimental calibrations. Results Root activity (CR) was found to peak at the flowering stage in late spring (S. borysthenica) or early summer (C. rhoeadifolia). Both the natural shortage of rainfall and the experimental summer drought reduced root activity in both species. Stipa borysthenica displayed great plasticity in root activity, including quick post-treatment recovery during the rainy autumn. The changes observed in root activity were similar to those previously recorded using conventional root investigation techniques (i.e. destructive, minirhizotron, ingrowth core) in temperate grasslands. Conclusions Root capacitance measurements proved to be adequate for monitoring root activity in situ in natural grassland. The method could be particularly useful in studies where plant injury or soil disturbance need to be avoided.

Funder

Hungarian Scientific Research Fund

Magyar Tudományos Akadémia

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3