Stoichiometry of litter decomposition under the effects of climate change and nutrient enrichment: A meta-analysis

Author:

de la Casa JavierORCID,Sardans Jordi,Galindo Marta,Peñuelas Josep

Abstract

Abstract Aims The cycling of nutrients from plant litter has key implications for the functioning of terrestrial ecosystems by controlling nutrient availability and net primary production. Despite extensive research on the effects of global change on ecosystem functioning, the direct implications of global change on stoichiometry and nutrient dynamics during litter decomposition remain poorly understood. To address this gap, we conducted a meta-analysis. Methods We analysed 178 experiments that simulated (i) warming, (ii) drought, (iii) increased water availability, (iv) N enrichment, (v) P enrichment, and (vi) combined N and P (N + P) enrichment. We compared earlier (approximately six months) and later (approximately one year) stages of decomposition and analysed the specific effects taking into account climate and plant type. Results The C:N and C:P ratios decreased in most warming and nutrient enrichment scenarios, leading to losses of litter C content, while the N:P ratio remained more resilient and affected by water availability. Furthermore, the abundance of resources (water and N + P) fosters the decomposition of litter. The nutrient mobilisation increases for both P and N under non-limited nutrient enrichment and it is faster for N than for P when water increases its availability. Nutrient enrichment was relevant in later stages of decomposition. Conclusions Our study provides insights into the fate of litter decomposition and its stoichiometric dynamics in response to drivers of global change. Concerning scenarios of C release and N and P immobilisation were identified. However, further experimentation and analysis are necessary to consider all interacting drivers.

Funder

Ministerio de Ciencia e Innovación

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3