Root-rhizosphere-soil interactions in biopores

Author:

Wendel Anna S.,Bauke Sara L.,Amelung Wulf,Knief Claudia

Abstract

Abstract Background Even with extensive root growth, plants may fail to access subsoil water and nutrients when root-restricting soil layers are present. Biopores, created from decaying roots or soil fauna, reduce penetration resistance and channel root growth into the deeper soil. Further positive effects on plants result from biopore traits, as the pore walls are enriched in nutrients, microbial abundance, and activity relative to bulk soil. However, negative effects on plant growth have also been observed due to root clumping in biopores, less root-soil contact than in the surrounding bulk soil and leaching of nutrients. Scope We discuss methods for biopore research, properties of biopores and their impact plant performance based on a literature review and own data. We elucidate potential implications of altered root-soil contact for plant growth and the consequences of root growth in pores for the rhizosphere microbiome. Conclusions Biopores play an important but ambiguous role in soils. The effects of biopores on plant growth depend on soil properties such as compaction and moisture in an as-yet-unresolved manner. However, pore properties and root-soil contact are key parameters affecting plant yield. Knowledge gaps exist on signaling pathways controlling root growth in pores and on mechanisms modifying rhizosphere properties inside biopores. The degree to which negative effects of biopores on plant growth are compensated in the bulk soil is also unclear. Answering these questions requires interdisciplinary research efforts and novel imaging methods to improve our dynamic understanding of root growth and rhizosphere processes within biopores and at the rhizosphere-biopore interface.

Funder

Deutsche Forschungsgemeinschaft

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3