Shallow roots of different crops have greater water uptake rates per unit length than deep roots in well-watered soil

Author:

Müllers Yannik,Postma Johannes A.,Poorter Hendrik,Kochs Johannes,Pflugfelder Daniel,Schurr Ulrich,van Dusschoten DagmarORCID

Abstract

Abstract Purpose Commonly, root length distributions are used as a first approximation of root water uptake profiles. In this study we want to test the underlying hypothesis of a constant water uptake rate per unit root length over depth. Methods Root water uptake profiles were measured using a novel sensor technology. Root length was measured with MRI and by scanning harvested roots. Experiments were performed with pot-grown barley (Hordeum vulgare), maize (Zea mays), faba bean (Vicia faba), and zucchini (Cucurbita pepo). Results For barley, maize, and faba bean, we found that roots in the top 15 cm had significantly greater water uptake rates per unit length than roots in the bottom 30 cm. For zucchini, the trend was similar but not significant. Therefore, variation of root water uptake rates with depth could be explained only partly (61–71%) by a variation of root length with depth. Conclusion The common approximation of root water uptake profiles by root length distributions relies on constant water uptake rates per unit root length. This hypothesis does not hold in our study, as we found significantly greater water uptake rates per unit length in shallower than in deeper roots. This trend was consistent among species, despite the partly strong variation in physiological parameters. We suggest that this is caused by a decreasing axial transport conductance with depth. This might result in a general underestimation of water uptake rates in shallow soil layers when they are approximated by the root length distribution.

Funder

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3