Effect of post-harvest practices on greenhouse gas emissions in rice paddies: flooding regime and straw management

Author:

Belenguer-Manzanedo María,Alcaraz Carles,Camacho Antonio,Ibáñez Carles,Català-Forner Mar,Martínez-Eixarch MaiteORCID

Abstract

Abstract Aims To assess 1) the effect of the combination of flooding (winter flooding vs. non-winter flooding; WFL vs NWF) and timing of straw incorporation (early vs late straw incorporation; ESI vs LSI) in the post-harvest of paddy agrosystem, on a year-round global balance of greenhouse gases (GHG) exchanges, i.e. methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O); 2) the impact on the net ecosystem carbon balance (NECB) and 3) the resulting net global warming potential (GWP). Methods A field experiment was conducted with fortnightly samplings of main GHG emissions. Effect of the studied factors on GHG emissions was seasonally assessed. The net GWP is estimated from the balance between GHG (CH4 and N2O) and NECB. Results NWF-LSI reduced net GWP by 206% compared to conventional post-harvest management (WFL-ESI). NECB was similar in all treatments. Avoiding winter flooding reduced CH4 emissions significantly in the post-harvest and next growing seasons, while delay straw incorporation prevented CH4 and CO2 emissions during post-harvest. None of the treatments increased N2O emission. Environmental implications of post-harvest management options are discussed. Conclusions Post-harvest management affects net GWP of the paddy rice cultivation by modifying GHG emissions in post-harvest and next growing season without compromise sequestration C budget. The combination of non-winter flooding and late straw incorporation strategies were more effective in reducing both CH4 and CO2 emissions, due to avoiding higher temperatures at the time of the straw incorporation during post-harvest and increasing soil Eh conditions at the following growing season.

Funder

Recerca i Tecnologia Agroalimentàries

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3