Unravelling the fate of foliar-applied nickel in soybean: a comprehensive investigation

Author:

de Oliveira Jessica Bezerra,Lavres Jose,Kopittke Peter M.,Chaney Rufus L.,Harris Hugh H.,Erskine Peter D.,Howard Daryl L.,dos Reis André Rodrigues,van der Ent AntonyORCID

Abstract

Abstract Background and aims Nickel (Ni) deficiency has been reported to occur in soybean (Glycine max) grown on leached tropical soils in Brazil. We aimed to determine whether an internal or external Ni supply can compensate for low Ni within the seed by assessing whether the amount of Ni in the seed whether the foliar-application of aqueous NiSO4 influenced the uptake of Ni by the leaf, the nutritional status of the plant, urease activity and growth. Methods We used Ni-depleted seeds (<0.35 μg Ni per g) and Ni-sufficient seeds (11.1 μg Ni g−1) for hydroponic experiments. Seedlings were grown either with or without an external Ni supply (0 or 0.85 μM Ni in nutrient solution) and either with or without an internal Ni supply (with or cotyledons removed). In addition, we used synchrotron-based micro-X-ray fluorescence analysis to examine the distribution of foliar-applied Ni (50 and 100 mg L-1). Key results Leaf Ni concentration and urease activity were both enhanced by increasing either the internal (cotyledon seed store) or external (solution) Ni supply. In addition, plants derived from Ni-depleted seed that received external Ni supply had 9.2% higher biomass relative to plants derived from Ni-sufficient seeds which received Ni. When foliar-applied, Ni accumulated in the pedicles of the trichomes within 15 minutes of application, and then moved to the vascular bundles before dispersing further into tissues within 3 hours. Conclusions Trichomes are an important pathway for foliar Ni absorption in soybean, but there are still major knowledge gaps our understanding of the physiological function of trichomes in the uptake of metal ions from foliar micro-nutrient treatments.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Centros de Pesquisa, Inovação e Difusão, Fundação Amazônia Paraense de Amparo à Pesquisa

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3