Abstract
Abstract
Aims
Myxospermous seed mucilage is multifunctional and is often found in seeds (or achenes) of species occupying arid environments where the trait may influence seed-dispersal and -germination of seeds. The seed mucilage may also enhance soil-water retention, −hydraulic conductivity and -stability. However, the relationship between seed mucilage quantity, seed germination and seedling traits across environmental gradients which determine water-deficit stress has not yet been ascertained.
Methods
Therefore, we characterised and tested the relationship between seed mucilage quantity, water-deficit stress responses of seeds and seedlings of 36 accessions of four different Plantago species (P. albicans L., P. coronopus L., P. lagopus L. and P. anceolata L.). These were gathered from six regions across Europe, which presented environmental gradients (of rainfall and temperature), and varying soil qualities.
Results
Seed mucilage was significantly greater in seeds of accessions experiencing: highest summer temperatures; lowest summer precipitation; soils of the same warm dry regions which had greater capacity to retain water within narrow pore spaces. Under water-deficit stress, seeds with most mucilage exhibited a lower base water potential for germination, suffered least seedling mortality and exhibited the most successful seedling development.
Conclusions
The findings indicate that seed mucilage quantity appeared as an ‘adaptive’ trait and there is a relationship between seed-mucilage quantity, seed germination plus seedling survival and development under environmental conditions of highest water-deficit stress.
Funder
Royal Botanical Gardens, Kew
FP7 People: Marie-Curie Actions
James Hutton Institute
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science
Reference56 articles.
1. Ahmad S, Ahmad R, Ashraf MY, Ashraf M, Waraich EA (2009) Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pak J Bot 41(2):647–654
2. Ahmed MA, Kroener E, Holz M, Zarebanadkouki M, Carminati A (2014) Mucilage exudation facilitates root water uptake in dry soils. Funct Plant Biol 41(11):1129–1137
3. Bassett IE, Simcock RC, Mitchell ND (2005) Consequences of soil compaction for seedling establishment: implications for natural regeneration and restoration. Austral Ecol 30(8):827–833
4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1(7):1–23
5. Bengough AG, Mullins CE (1990) The resistance experienced by roots growing in a pressurised cell. A reappraisal. Plant Soil 123(1):73–78
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献