Spatio-temporal variation of surface soil hydraulic properties under different tillage and maize-based crop sequences in a Mediterranean area

Author:

Talukder RasendraORCID,Plaza-Bonilla Daniel,Cantero-Martínez Carlos,Di Prima Simone,Lampurlanés Jorge

Abstract

Abstract Aims The surface crust formed by the drop impact of rainfall and/or irrigation is a prevalent characteristic in many Mediterranean soils. However, the temporal variation of soil hydraulic properties induced by surface crust during the high-frequency irrigation has rarely been investigated. Methods Beerkan infiltration tests in conjunction with the BEST method were used to investigate the effects of surface crusting on the spatio-temporal variation of saturated soil hydraulic conductivity (Ks, mm s−1), sorptivity (S, mm s−0.5), mean pore size (r, mm), number of effective pores per unit area (N, m−2) in Agramunt, NE Spain. Results In response to autumn tillage, intensive tillage (IT) increased Ks and S due to higher r and N, but both declined after 60 days. Reduced tillage (RT), maintained comparable Ks and S values, despite having a lower N value. After the spring tillage, both IT and RT developed crusted layers, resulting in decreased Ks, S and N. Long-term no-tillage (NT) showed an increasing trend of Ks and S over time, except for the last sampling. Spatial variation (i.e., between the rows, B-row vs. within the row of crops, W-row) of Ks and S was found, and non-crusted soils (W-row) had consistently higher Ks and S than crusted soils (B-row). Conclusions Conservation tillage i.e., RT and NT improve the surface soil structure and reduce the risk of crust development. Surface cover by crops may help to prevent crust formation within the row of crops, improving soil hydraulic conductivity.

Funder

Agencia Estatal de Investigación

Universitat de Lleida

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3