Carrot genotypes differentially alter soil bacterial communities and decomposition of plant residue in soil

Author:

Triviño Narda J.,Rodriguez-Sanchez Alejandro,Filley Timothy,Camberato James J.,Colley Micaela,Simon Phillip,Hoagland LoriORCID

Abstract

Abstract Purpose Farmers need alternative approaches to manage nitrogen (N) that meet crop needs while reducing loss to the environment. Identifying crop genotypes that promote decomposition of organic materials and understanding the potential mechanisms responsible could help address this challenge. Consequently, we aimed to 1) determine whether carrot genotypes differ in their potential to facilitate organic matter decomposition in soil, and 2) identify bacterial taxa that are stimulated by carrot roots, and thus could play a role in these processes. Methods We grew five genotypes expected to differ in N use efficiency in a nutrient-poor soil amended with 15 N-enriched corn residue, tracked changes in carbon (C) and N pools, quantified microbial activity and bacterial community composition, and predicted the potential expression of microbial genes involved in soil C and N cycles. Results Experimental genotype 8503 had the greatest capacity to promote decomposition of corn residues. This genotype had the highest % of N from the corn residue in its taproots and on average, promoted higher b-glucosidase activity in soils. Distinct bacterial communities from the families Micromonosporaceae, Chromatiaceae, and Rhodospirillaceae were also enriched in the soils of genotypes like 8503 that were most effective in obtaining N from the corn residue, and this was correlated with greater potential expression of genes responsible for β-glucosidase and nitrification activity. Conclusions Carrot genotypes do differ in their potential to alter soil bacterial communities and stimulate microbially-mediated decomposition of organic materials indicating that it may be possible to begin selecting for this important trait.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3