Interactions between an arbuscular mycorrhizal inoculum and the root-associated microbiome in shaping the response of Capsicum annuum “Locale di Senise” to different irrigation levels

Author:

Calvo Alice,Reitz Thomas,Sillo Fabiano,Montesano Vincenzo,Cañizares Eva,Zampieri Elisa,Mahmoudi Roghayyeh,Gohari Gholamreza,Chitarra Walter,Giovannini Luca,Conte Adriano,Mennone Carmelo,Petruzzelli Gianniantonio,Centritto Mauro,González-Guzmán Miguel,Arbona Vicent,Fotopoulos Vasileios,Balestrini RaffaellaORCID

Abstract

Abstract Background and aims The use of root-associated microorganisms emerge as a sustainable tool to enhance crop tolerance and productivity under climate change, particularly in drought-affected areas. Here, the impact of an inoculum based on arbuscular mycorrhizal fungi (AMF) was evaluated on pepper (Capsicum annuum L.) cultivation at varying water irrigation treatments (well-watered, reduced irrigation and rain-fed) under open-field conditions. Methods Agronomic and ecophysiological parameters, as well as biochemical analyses on stress markers and phytohormones in leaves and on fruit quality traits, were evaluated, along with the shifts in soil- and root-associated microbial communities. Results Rain-fed water treatment caused reduced fruit sizes, while no differences were detected among well-watered and reduced irrigation. Reduced irrigation did not cause a reduction in stomatal conductance. The highest AM fungal colonization rates were observed under reduced irrigation, and the enhanced flavonoid content and reduced oxidative stress markers in AMF-inoculated plants suggested a synergistic effect of AM fungal inoculation in boosting plant tolerance against stress. A shift in microbial community composition in the different irrigation treatments, associated with different enzymatic activity, highlighted the potential role of microbial dynamics in plant stress response under water-limited conditions. Conclusion The study suggests that a reduced irrigation comes along with beneficial impacts on pepper root associated microbes, while not impairing crop performance and yields, indicating a potential of saving water. All together, our results imply that optimization of irrigation and beneficial plant–microbe interactions, such as AM fungal symbiosis, can improve pepper physiological and productivity features under climate change.

Funder

Consiglio Nazionale Delle Ricerche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3