Unlocking the genetic control of spring wheat kernel traits under normal and heavy metals stress conditions

Author:

Mourad Amira M. I.ORCID,Eltaher ShamseldeenORCID,Börner AndreasORCID,Sallam AhmedORCID

Abstract

Abstract Background and aims Pb and Sn concentration increase rapidly due to the industrial revolution and cause a significant reduction in wheat production and productivity. Understanding the genetic control of Pb and Sn tolerance is very important to produce wheat cultivars that are tolerant to such metals. Methods Extensive genetic analyses using genome-wide association study, functional annotation, and gene enrichment were investigated in a set of 103 highly diverse spring wheat genotypes. Kernel traits such as kernel length (KL), kernel diameter (KD), kernel width (KW), and 1000-kernel weight (TKW) were measured under each metal as well as under controlled conditions. Results The GWAS identified a total of 131, 126, and 115 markers that were associated with kernel traits under Ctrl, Pb, and Sn. Moreover, the stress tolerance index (STI) for Pb and Sn was calculated and GWAS revealed 153 and 105 significant markers, respectively. Remarkably, one SNP Ku_c269_2643 located within TraesCS2A02G080700 gene model was found to be associated with KL under the three conditions. The results of gene enrichment revealed three, three, and six gene networks that have an association with the processes involved in kernel formation. The target alleles of all significant markers detected by GWAS were investigated in the most tolerant wheat genotypes to truly select the candidate parents for crossing in future breeding programs. Conclusion This is the first study that unlocked the genetic control of kernel yield under controlled and heavy metals conditions. Understanding the genetic control of kernel traits under heavy metals will accelerate breeding programs to improve wheat tolerance to Pb and Sn.

Funder

Science and Technology Development Fund

Alexander von Humboldt-Stiftung

Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3