Getting the best from pot trials with soil-borne Oomycetes

Author:

Davison ElaineORCID,Hardy Giles

Abstract

Abstract Soil-borne Oomycetes are important pathogens of nursery plants, agricultural and horticultural crops, and woody plants in natural ecosystems. They are most damaging when plants are overwatered or growing in poorly drained sites. Poor growth could result from root infection, root damage resulting from the anoxic conditions which develop in saturated soil, or both. This is essential information for devising appropriate management options, as these will differ depending on the primary cause of poor health. Pot experiments are often used to determine whether these soil-borne pathogens cause root infection which is assumed to be by zoospores produced in wet soil. Soil saturation followed by draining, is included as part of the experimental protocol to generate zoospores from the inoculum and facilitate their movement to, and infection of, plant roots. However, if soil saturation persists until the soil becomes anoxic, this may affect the host. In our opinion, this can muddle the interpretation of results, unless there are adequate controls which include root infection in unsaturated soil, and the effect of soil saturation on the host in the absence of the pathogen. Pot experiments are expensive in both time and equipment. They must be conducted to provide clear answers to the postulated hypotheses and ensure experiments are repeatable. We provide guidelines for conducting such pot experiments which will assist in clarifying the roles of these pathogens and soil saturation on plant growth, both separately and in combination.

Funder

Curtin University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3