What regulates the rhizodeposition of winter oilseed rape during growth?

Author:

Remus RainerORCID,Pandey Divya,Lüttschwager Dietmar

Abstract

Abstract Purpose The goal of this work was to contribute to a better understanding of the process of rhizodeposition in crops and to find helpful approaches for creating a simple model of rhizodeposition. For this purpose, we tested three hypotheses about the relationships and changes in the relative C partitioning coefficients and their ratios. In particular, we analyzed the relationships between root growth, belowground respiration, rhizodeposition and other traits during plant growth. Methods The ranges of variation in $$^{14}$$ 14 C partitioning coefficients and various plant traits were determined after $$^{14}$$ 14 C labeling of four winter oilseed rape genotypes in three developmental stages. Result For all genotypes, we found very strong and significant correlations between the percentages of freshly assimilated C used for rhizodeposition and root growth. In addition, we showed that the ratios of the relative $$^{14}$$ 14 C fluxes in the root-soil-soil gas system changed significantly during plant development and that the relative and absolute C fluxes of rhizodeposition followed different trends. The root growth rate and the change in the ratio of the percentages of $$^{14}$$ 14 C in rhizodeposition and root tissue over time were the key factors that determined the absolute amount of rhizodeposited C. We also found that the C partitioning in a taproot system leading to root growth and rhizodeposition was similar to that of an adventitious root system. Conclusion Based on our results, we conclude that using the identified key factors in combination with a root growth model, a simple model can be generated to describe rhizodeposition.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3