Plant strategies to mine iron from alkaline substrates

Author:

Vélez-Bermúdez Isabel CristinaORCID,Schmidt WolfgangORCID

Abstract

AbstractIn concert with oxygen, soil alkalinity strongly restricts the availability of iron, an essential nutrient with a multitude of functions in living organisms. In addition to its role in mitochondrial energy metabolism and as a cofactor for enzymes, in plants iron also plays key roles in photosynthesis and is required for chlorophyll biosynthesis. The ability to thrive in calcareous soils, referred to as calcicole behaviour, is the readout of an amalgam of traits of which efficient foraging of iron is a decisive factor. Recently, the well-established concept of two distinct iron uptake strategies, phylogenetically separating grasses from other land plants, was expanded by the discovery of auxiliary mechanisms that extend the range of edaphic conditions to which a species can adapt. Secretion of a tailor-made cocktail of iron-mobilising metabolites into the rhizosphere, the composition of which is responsive to a suite of edaphic and internal cues, allows survival in calcareous soils through a competitive iron acquisition strategy, which includes intricate interactions with the consortium of associated microorganisms in, on, and around the roots. This versatile, reciprocal plant-microbiome interplay affects iron mobilisation directly, but also collaterally by impacting growth, fitness, and health of the host. Here, we review the mechanisms and the multifaceted regulation of iron acquisition in plants, taking into consideration the specific constraints associated with the uptake of iron from alkaline soils. Knowledge on how plants extract iron from such soils sets the stage for a better understanding of essential ecological processes and for combatting iron malnutrition in humans.

Funder

Academia Sinica

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3