Potential crop yield gains under intensive soybean/maize intercropping in China

Author:

Chen Guohui,Jiang Fahui,Zhang Song,Zhang Qin,Jiang Guanjie,Gao Bingke,Cao Guojun,Islam Mahabub U. I.,Cao Zhen,Zhao Xiaomin

Abstract

Abstract Aims Intensive soybean/maize intercropping, a specific form of intercropping, holds promise in addressing the challenges posed by increasing food demands, diminishing cropland areas, deteriorating soil quality, and escalating environmental pollution. Methods To evaluate the potential of this system, we conducted a national meta-analysis, quantifying its absolute yield gain (net effect, NE) and land use efficacy (land equivalent ratio, LER). We further investigated the underlying mechanisms by examining local climate, soil properties, and field management practices and then developed random forest (RF) models to assess the system's potential, incorporating current information on natural resources. Results In China, an average NE of 3.2 ± 0.1 Mg ha−1 and LER of 1.4 ± 0.02 were achieved by intensive soybean/maize intercropping. The variance of NE was significantly influenced by air temperature (10%), soybean delay days (8%), and maize plant density (9%). Similarly, the LER was strongly driven by soybean delay days (14%), sunshine hours (11%), and maize density (10%). Notably, this intensive intercropping system efficiently utilizes available resources, such as light, temperature (heat), accumulated temperature, and soil nutrients, particularly in regions characterized by low soil fertility and limited agricultural resources. Ultimately, the RF model estimated substantial overyielding of 2 800 kg per hectare, representing approximately 1.4 times the current soybean and maize production under China's monoculture. Conclusions The implementation of intensive soybean/maize intercropping is highly beneficial throughout China, especially in areas with limited agricultural resources. The Yangtze River Basin, in potentially, emerges as the most suitable region for adopting this intensive intercropping practice.

Funder

the National Key Research and Development Project of China

National Natural Science Foundation of China

China Agriculture Research System

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3