Author:
Zhu Yuhao,Merbold Lutz,Leitner Sonja,Pelster David E.,Okoma Sheila Abwanda,Ngetich Felix,Onyango Alice Anyango,Pellikka Petri,Butterbach-Bahl Klaus
Abstract
Abstract
Aims
Decomposition of manure deposited onto pasture from grazing animals represents an important process for carbon (C) and nitrogen (N) cycles in grassland systems. However, studies investigating manure decomposition are scarce; especially in sub-Saharan Africa (SSA).
Methods
In this study, we measured decomposition of three types of animal manure (cattle, sheep, goat) over >1 year using litter bags at four climatically different sites across Kenya. Results Manure dry matter, total C, total N and ammonium concentrations decreased exponentially, with the most rapid decrease occurring during the first few weeks following application, followed by slower changes during the following 2–3 months. Rates of N mineralization were lower than those for C mineralization, resulting in decreasing C/N ratios over time. Generally, cattle manure decomposed faster than sheep or goat manure despite having a higher initial C/N ratio and lower N concentration, with decomposition rates for dry matter ranging from 0.200 to 0.989 k year−1. Cellulose decomposed first, while lignin concentrations increased among all manure types and at all sites.
Conclusions
We found that total manure decomposition rates were positively correlated with cumulative precipitation and aridity index, but negatively correlated with mean temperature. Our results show much slower decomposition rates of manures in semi-arid tropical environments of East Africa as compared to the few previous studies in temperate climates.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science
Reference83 articles.
1. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439. https://doi.org/10.2307/3546886
2. Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, Martiny JBH (2013) Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–725. https://doi.org/10.1890/12-1243.1
3. ASCE-EWRI (2004) The ASCE standardized reference evapotranspiration equation. Technical committee report to the environmental and water resources Institute of the American Society of civil engineers from the task committee on standardization of reference evapotranspiration. American Society of Civil Engineers, Reston
4. Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. https://doi.org/10.1016/j.soilbio.2008.12.022
5. Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F (2004) Impact of herbivores on nitrogen cycling: contrasting effects of small and large species. Oecologia 138:91–101. https://doi.org/10.1007/s00442-003-1402-5
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献