Impacts of plant domestication on soil microbial and nematode communities during litter decomposition

Author:

Palomino JavierORCID,García-Palacios PabloORCID,De Deyn Gerlinde B.ORCID,Martínez-García Laura BeatrizORCID,Sánchez-Moreno SaraORCID,Milla RubénORCID

Abstract

Abstract Purpose Plant domestication altered leaf litter quality. Since litter traits relate to soil functions and organisms (i.e., litter decomposition and soil decomposer communities), in this study we explore if domestication-induced changes in litter quality have affected their decomposability, and bacterial, fungal, and nematode communities in the soil. Methods We collected leaf litter from herbaceous crops and their wild progenitors, and measured litter chemical and physical traits. Then, we performed a litter decomposition assay on a common soil. After three months of litter incubation, we measured mass loss, nematode richness and community composition in ten crops. We also measured soil bacterial and fungal richness and community composition in six crops. Results Domesticated litters had less carbon (C) and leaf dry matter content (LDMC), which accelerated decomposition in comparison to wild litters. Fungal richness was higher in microcosms incubated with domesticated litters, while the effects of domestication on bacterial richness differed among crops. Domestication did not affect nematode richness. The effects of domestication on bacterial and fungal community compositions differed among crops. Soils with domesticated litters tended to have nematode communities with a higher abundance of bacterial feeding nematodes, in comparison to soils fed with wild litters. Conclusion Domestication altered decomposition at different levels. Leaf litter decomposability increased with domestication, which might alter resource inputs into the soil. Feeding soils with domesticated litters had idiosyncratic effects on soil microbes, but consistent effects on soil nematodes. Overall, domestication altered the linkages between crop residues and soil communities differently for bacteria, fungi, and nematodes.

Funder

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

European Union

Fundación BBVA

Universidad Rey Juan Carlos

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3