Soil moisture level and substrate type determine long-term seed lifespan in a soil seed bank

Author:

Mašková TerezaORCID,Phartyal Shyam S.ORCID,Abedi MehdiORCID,Bartelheimer MaikORCID,Poschlod PeterORCID

Abstract

Abstract Aims Seeds are usually classified as short- or long-term persistent. It is still hardly understood how environmental conditions influence seed persistence. The study aimed to monitor the long-term effects of different moisture and substrate on seed persistence. Methods Seeds of three Rumex species buried in autumn 2009 in combinations of moisture and substrate were exhumed in spring 2015 and 2021 to test their persistence in the soil after 5.5 and 11.5 years, respectively. Long-term persistence data were compared with data from previous short-term experiment for the same species and environmental conditions reported in Abedi et al. (Plant Soil 374:485-495, 2014). Results No seeds of R. acetosa were found viable after 1.5 years. Seeds of R. acetosella retained viability after 11.5 years mostly in dry-loam (~ 60%) and moist-sand (~ 25%) test conditions and moisture levels were identified as the main driver. R. maritimus retained ≥ 80% viability in moist and wet test conditions and > 40% in the dry test conditions. Conclusions For one (R. acetosella) of the three investigated species, the classification of soil seed bank type depended on environmental conditions, emphasizing the need to introduce a more detailed classification scheme for soil seed persistence and to include the information about extrinsic parameters in databases. However, in the other two species with transient (R. acetosa) and long-term persistent (R. maritimus) seed banks, there are rather intrinsic parameters that affect seed viability. Hence, both site-specific environmental factors as well as seed germination traits need full consideration in the classification of future soil seed bank studies.

Funder

Alexander von Humboldt-Stiftung

Ministry of Science Research and Technology

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3