Abstract
Abstract
Background and aims
One of the most promising strategies for sustainable intensification of crop production involves the utilization of beneficial root-associated microorganisms, such as plant growth-promoting bacteria and arbuscular mycorrhizal fungi (AMF). The aim of this study was to investigate whether a seed-applied biostimulant, based on the bacterial strain Bacillus amyloliquefaciens IT-45 and a plant polysaccharide extract, and crop enhancement tools, such as hybrids with contrasting early vigor and nitrogen (N) plus phosphorus (P) starter fertilization, and their interactions, shape the communities of native root-colonizing AMF symbionts in maize.
Methods
A factorial growth chamber experiment was set up with two maize genotypes in natural soil. Mycorrhizal colonization was evaluated after root staining. The diversity and composition of AMF communities were assessed by PCR-DGGE of the 18S rRNA gene and amplicon sequencing.
Results
N and P fertilization determined a consistent reduction of AMF root colonization and, in combination of biostimulant, a reduction of AMF richness. The biostimulant alone generally did not affect AMF colonization or the community biodiversity. In addition the effect of the two factors were modulated by maize genotype. In all treatments, predominant AMF were represented by Glomus sp. and Funneliformis mosseae, while populations of the genus Rhizoglomus were rarely detected in biostimulant and NP fertilization treatments.
Conclusion
The results of this study increase our understanding of how the biostimulant seed treatment may affect native AMF communities, depending on NP fertilization and maize genotype and may improve the implementation of innovative tools in sustainable and resilient agroecosystems.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献