The quantitative importance of key root traits for radial water loss under low water potential

Author:

Song ZhiweiORCID,Zonta FrancescoORCID,Ogorek Lucas León PeraltaORCID,Bastegaard Viggo Klint,Herzog MaxORCID,Pellegrini ElisaORCID,Pedersen OleORCID

Abstract

Abstract Aims Root tissue water can be lost to the dry topsoil via radial water loss (RWL) resulting in root shrinking and loss of contact with the rhizosphere. The root barrier to radial oxygen loss (ROL) has been shown to restrict RWL, therefore we hypothesized that the inducible barrier can be formed as a response to low soil water potential and play a role, together with other root traits, in restricting RWL. Methods Rice and wheat were grown in hydroponics with contrasting water potential to diagnose ROL barrier formation and to explore how key root traits (ROL barrier, root diameter, root porosity) affect RWL. Moreover, we developed a numerical model predicting RWL as a function of root diameter, root porosity and presence of a barrier to ROL. Results Methylene blue staining showed that low water potential induced a ROL barrier formation in roots of rice, and also resulted in an apoplastic barrier, as identified by the apoplastic tracer periodic acid. The barrier significantly restricted RWL, but root diameter and tissue porosity also influenced RWL. Our numerical model was able to reflect the empirical data and clearly demonstrated that thick roots and a barrier to ROL restricts RWL while cortical porosity accelerates RWL. Conclusions Our modelling approach highlighted that increase in root tissue porosity, a common response to drought, conserves water when new roots are formed, but the higher desiccation risk related to high-porosity roots can be effectively counteracted by forming thick roots or even better, by a barrier to ROL.

Funder

China Scholarship Council

Natur og Univers, Det Frie Forskningsråd

EU Horizon 2020 Talent

Danish International Development Agency

University of Western Australia

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3