Impact of root hairs on microscale soil physical properties in the field

Author:

Marin M.,Hallett P. D.ORCID,Feeney D. S.,Brown L. K.,Naveed M.,Koebernick N.,Ruiz S.,Bengough A. G.,Roose T.,George T. S.

Abstract

Abstract Aims Recent laboratory studies revealed that root hairs may alter soil physical behaviour, influencing soil porosity and water retention on the small scale. However, the results are not consistent, and it is not known if structural changes at the small-scale have impacts at larger scales. Therefore, we evaluated the potential effects of root hairs on soil hydro-mechanical properties in the field using rhizosphere-scale physical measurements. Methods Changes in soil water retention properties as well as mechanical and hydraulic characteristics were monitored in both silt loam and sandy loam soils. Measurements were taken from plant establishment to harvesting in field trials, comparing three barley genotypes representing distinct phenotypic categories in relation to root hair length. Soil hardness and elasticity were measured using a 3-mm-diameter spherical indenter, while water sorptivity and repellency were measured using a miniaturized infiltrometer with a 0.4-mm tip radius. Results Over the growing season, plants induced changes in the soil water retention properties, with the plant available water increasing by 21%. Both soil hardness (P = 0.031) and elasticity (P = 0.048) decreased significantly in the presence of root hairs in silt loam soil, by 50% and 36%, respectively. Root hairs also led to significantly smaller water repellency (P = 0.007) in sandy loam soil vegetated with the hairy genotype (-49%) compared to the hairless mutant. Conclusions Breeding of cash crops for improved soil conditions could be achieved by selecting root phenotypes that ameliorate soil physical properties and therefore contribute to increased soil health.

Funder

Biotechnology and Biological Sciences Research Council

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3