Towards a better understanding of soil nutrient dynamics and P and K uptake

Author:

Schut Antonius G. T.ORCID,Reymann W.

Abstract

Abstract Aim Balanced crop nutrition is key to improve nutrient use efficiency and reduce environmental impact of farming systems. We developed and tested a dynamic model to predict the uptake of P and K in long-term experiments to better understand how changes in soil nutrient pools affect nutrient availability in crop rotations. Methods Our RC-KP model includes labile and stable pools for P and K, with separate labile pools for placed P and organic fertilizers including farm yard manure (FYM). Pool sizes and crop-specific relative uptake rates determined potential uptake. Actual crop uptake from labile pools was based on concepts developed by Janssen et al. (Geoderma 46:299-318, 1990). The model was calibrated on three long-term experiments from Kenia (Siaya), Germany (Hanninghof) and the United Kingdom (Broadbalk) to estimate parameter values for crop-specific relative uptake rates and site-specific relative transfer rates. Results The model described N, P and K uptake accurately with a Nash-Sutcliff modelling efficiency of 0.6–0.9 and root mean squared errors of 2.6–3.4 kg P ha−1 and 14–20 kg K ha−1. Excluding organic labile pools did not affect model accuracy in Broadbalk in contrast to Hanninghof where Mg deficiencies affected crop uptakes in treatments without Mg or FYM. Conclusions This relatively simple model provides a novel approach to accurately estimate N, P and K uptake and explore short- and long-term effects of fertilizers in crop rotations. Interactions between limiting nutrients affecting actual nutrient uptake were captured well, providing new options to include N, P and K limitations in crop growth models.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3