Biostimulatory effect of vermicompost extract enhances soil mycorrhizal activity and selectively improves crop productivity

Author:

Koskey GilbertORCID,Avio Luciano,Turrini Alessandra,Sbrana Cristiana,Bàrberi Paolo

Abstract

Abstract Purpose Commercial production and the use of liquid vermicompost extract (LVE) is gaining attention as a technique that supports integrated soil-microbial-crop management for sustainable agriculture. However, the interaction effects of LVE, arbuscular mycorrhizal fungi (AMF), and host plants on the delivery of agroecosystem services in alkaline soil have been less studied. Methods We carried out a 3-year field experiment in Central Italy, to investigate the short-term effect of LVE on soil mycorrhizal inoculum potential (MIP), AMF root colonization, and productivity of berseem clover, lentil, and sunflower. LVE produced in different years were screened for microbial properties using Illumina Miseq sequencing. LVE was applied at seeding, crop stem elongation and flowering stages. Control crops received water as a placebo. Results LVE bacterial communities were more diverse and showed a higher turnover between 2019 and 2020 than fungal communities. Diverse microbial groups, the majority of which belonged to phyla Proteobacteria, Bacteroidetes, Firmicutes, and Mucoromycota, were detected, including N-fixers (Flavobacterium, Malikia, and Citrobacter), P-solubilizers (Pseudomonas), and C-degraders (Tolumonas, Arcobacter, and Mucor). Notably, LVE treatment enhanced soil MIP and AMF root colonization in most crops, but selectively improved shoot biomass of berseem clover (+ 32%) and sunflower (+ 34%), and grain yield (+ 37%) and oil concentration (+ 5%) in sunflower, compared to the corresponding non-treated controls. Conclusions LVE had diverse groups of bacteria and a few fungal taxa, and its application enhanced mycorrhizal properties and selected growth- and yield-related variables in lentil, berseem clover, and sunflower. This could be due to LVE’s biostimulating effect arising from the vermicompost-associated microbiome and biomolecules.

Funder

Horizon 2020 Framework Programme

Scuola Superiore Sant'Anna

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3