Constitutive expression of bZIP19 with the Zn sensor motif deleted in Arabidopsis leads to Zn-specific accumulation and no visible developmental penalty

Author:

Huizinga Sjors,Persson Daniel P.,Assunção Ana G. L.

Abstract

Abstract Aims The transcription factors bZIP19 and bZIP23 function as central regulators of the Zn deficiency response, and also as sensors of intracellular Zn concentration through their protein Zn-Sensor Motif (ZSM). While under Zn deficiency the target genes of bZIP19/23 are transcriptionally activated, under Zn sufficiency the binding of Zn2+ ions to the ZSM halts gene expression. Mutations, including deletions, in the ZSM affect the activity of bZIP19/23 and leads to a Zn-insensitive and constitutive activation of target gene expression. Here we investigated the effects of such deregulation of the Zn deficiency response on plant growth and Zn accumulation, and evaluate whether this deregulation influences Cd accumulation. Methods We analysed Arabidopsis lines constitutively expressing bZIP19 with the ZSM deleted and measured developmental traits and ionomics in soil-grown plants, comparing control and Cd-spiked soils. Results Results indicated that deletion of the ZSM, and the consequent deregulation of the Zn deficiency response, does not cause visible penalties in plant growth, development or reproduction. Compared with the wild-type, bZIP19-ZSM deletion increased Zn accumulation in leaves and seeds, and such an increase was mostly limited to Zn. In seeds, the increased Zn content appears distributed evenly throughout the embryo. Exposure of bZIP19-ZSM deletion to a low-level Cd contamination did not cause enhanced Cd accumulation, which is important given that Cd uptake is a concern in crop Zn biofortification. Finally, we verified that the bZIP19-ZSM deletion represents a gain-of-function dominant mutation. Conclusion Together, results support that modulation of F-bZIP transcription factor’s activity may be a promising avenue for Zn biofortification in crops.

Funder

Copenhagen University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3