Glyphosate residues alter the microbiota of a perennial weed with a minimal indirect impact on plant performance

Author:

Ramula S.ORCID,Mathew S. A.ORCID,Kalske A.ORCID,Nissinen R.ORCID,Saikkonen K.ORCID,Helander M.ORCID

Abstract

Abstract Purpose In cold climates, glyphosate residues may linger in soils, with effects on plant–microbe interactions and, consequently, plant performance. Here, we explore the influence of glyphosate residues on the endophytic microbiota (bacteria and fungi) and performance of the perennial nitrogen-fixing weed Lupinus polyphyllus. Methods In a common garden, we grew plants from six populations of L. polyphyllus in glyphosate-treated or untreated control soils, with or without additional phosphorus. We sampled plant microbiota (leaves, roots, nodules) and assessed plant performance based on six traits: height, retrogression probability (i.e. shrinkage), biomass, root:shoot ratio, nodule number, and nodule viability. Results The richness of plant endophytic microbial communities was determined by soil phosphorus level rather than by glyphosate treatment. However, for bacteria, the composition of these communities differed between glyphosate-treated and control soils across plant tissue types; no difference was observed for fungi. The plant bacterial communities in both soil types were dominated by potential nitrogen-fixing bacteria belonging to family Bradyrhizobiaceae, and particularly so in glyphosate-treated soils. Overall, though, these changes in plant bacterial communities had a minor effect on plant performance: the only difference we detected was that the probability of retrogression was occasionally higher in glyphosate-treated soils than in control soils. Conclusion Our findings indicate that glyphosate-based herbicides, when applied at the recommended frequency and concentration, may not have critical effects on the growth of short-lived weeds after the safety period has passed; however, the endophytic microbiota of such weeds may experience longer-lasting shifts in community structure.

Funder

Biotieteiden ja Ympäristön Tutkimuksen Toimikunta

University of Turku (UTU) including Turku University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3