Recognition of trace element hyperaccumulation based on empirical datasets derived from XRF scanning of herbarium specimens

Author:

Purwadi Imam,Erskine Peter D.,Casey Lachlan W.,van der Ent AntonyORCID

Abstract

Abstract Background and aims Hyperaccumulation is generally defined as plants exhibiting concentrations of metal(loid)s in their shoots at least an order of magnitude higher than that found in ‘normal’ plants, but this notional threshold appears to have limited statistical underpinning. The advent of massive (handheld) X-ray fluorescence datasets of herbarium specimens makes it increasingly important to accurately define threshold criteria for recognising hyperaccumulation of metal(loid)s such as manganese, cobalt, nickel, zinc, arsenic, selenium, and rare earth elements. Methods We use an extensive dataset of X-ray fluorescence elemental data of ~ 27,000 herbarium specimens together with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) elemental data of 1710 specimens to corroborate threshold values for hyperaccumulator plants. The distribution of elemental data was treated as a Gaussian mixture model due to subpopulations within the dataset and sub-populations were clustered in ‘normal’ and ‘hyperaccumulator’ classes. The historical hyperaccumulator thresholds were compared to the concentrations corresponding to the value for which the cumulative distribution function of the Gaussian model of the hyperaccumulator class reaches a probability of 99%. Results Our analysis of X-ray fluorescence data indicates that the historical thresholds for manganese (10,000 µg g−1), cobalt (300 µg g−1), nickel (1000 µg g−1), zinc (3000 µg g−1), arsenic (1000 µg g−1), and selenium (100 µg g−1) are substantially higher than then the concentrations required to have a 99% probability of falling in the hyperaccumulator class at 1210 µg g−1 for manganese, 32 µg g−1 for cobalt, 280 µg g−1 for nickel, 181 µg g−1 for zinc, 8 µg g−1 for arsenic, and 10 µg g−1 for selenium. All of the historical hyperaccumulation thresholds exceed the mean concentration of the hyperaccumulator populations and fall in the far-right tail of the models. Conclusions The historical thresholds for manganese, cobalt, nickel, zinc, arsenic, and selenium are considerably higher than necessary to identify hyperaccumulators. Our findings provide a more precise understanding of the statistical underpinnings of the phenomenon of hyperaccumulation, which will ensure consistency in reporting on these plants.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3