Phosphorus management is key to effective deployment of root ideotypes in complex soil environments

Author:

van der Bom Frederik J. T.,Williams Alwyn,Borrell Andrew K.,Raymond Nelly,Bell Michael J.

Abstract

Abstract Purpose We questioned how root ideotypes selected for deep or shallow root architecture function in complex environments with heterogeneous distributions of phosphorus (P), such as in many cropping systems in north-eastern Australia. Methods We used the rhizobox method to evaluate how contrasting genotypes of durum wheat and sorghum (wide and narrow root angle) responded to combinations of starter-P and deep P bands. Results Although we found evidence that root angle may influence spatio-temporal exploration for deep P bands, (early) plant access to P was the critical driver for plant growth. Without P, root system growth was retarded such that genotypic differences were hardly observed. Access to P boosted root exploration at depth by virtue of greater root system size, such that wide-angle genotypes with P outperformed narrow-angle ones without P. Plastic root responses to P benefited the expression of the broader root system architecture. We observed variation between species and individual parameters, but overall Starter-P and deep P bands tended to deliver complementary benefits when considering plant growth, P uptake, and phenological development together. Conclusion Our study highlights that nutritional constraints may limit the ability of root ideotypes to function in complex target environments. Development and deployment of root ideotypes should consider how local conditions (including soil nutrient distribution, physical and biological properties) influence crop phenotype and their ability to deliver the intended benefits. Within this, soil nutrient management is a critical determinant and an opportunity to influence the target environment.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3