Enhancing soil health and carbon sequestration through phytogenic treatment: insights into microbial functional pathways in pasture dieback affected soil

Author:

Ren XipengORCID,Whitton Maria M.ORCID,Trotter TienekeORCID,Ashwath NanjappaORCID,Stanley DraganaORCID,Bajagai Yadav S.ORCID

Abstract

Abstract Background and aims Phytogenic bioactive plant products have shown promise in mitigating Australian pasture dieback (PDB) syndrome, a complex condition that adversely affects pasture productivity and sustainability. PDB is characterised by the progressive decline of grass, resulting in reduced soil organic matter. Recent studies have indicated that soil microbial communities play a crucial role in the remediation of affected pastures. In our previous research, the application of a phytogenic secondary metabolic product demonstrated a positive impact on soil microbial diversity, and it significantly increased pasture biomass. Building upon our previous study, we aimed to further investigate the mechanisms underlying pasture improvement through phytogenic treatment by spraying. Methods Here, we conducted a shotgun metagenomic investigation of the soil microbiome functional pathways affected by the phytogenic treatment. Results The application of phytogenic treatment to the PDB-affected soil resulted in a notable increase in soil microbial functional richness and diversity and showed alterations in beta diversity. Among the 65 significantly altered functional pathways, 54 showed an increase, while 11 decreased in response to the phytogenic treatment. The treatment altered the soil’s functional capacity towards increased production of biomolecules, including amino acids, lipids, and cofactors, thus enhancing the soil’s nutritional value. Furthermore, the phytogenic treatment significantly increased pathways involved in soil detoxification and carbon sequestration, suggesting its potential to promote soil health and carbon storage. Conclusion Our findings contribute to a better understanding of the mechanisms involved in improving the soils affected by pasture dieback. These insights will help develop sustainable strategies for pasture production.

Funder

Fitzroy Basin Association

EW Nutrition, Visbek, Germany

Central Queensland University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3