Interaction between endophytic Proteobacteria strains and Serendipita indica enhances biocontrol activity against fungal pathogens

Author:

del Barrio-Duque Alejandro,Samad Abdul,Nybroe Ole,Antonielli Livio,Sessitsch Angela,Compant StéphaneORCID

Abstract

Abstract Aims Plants host communities of fungal and bacterial endophytes, establishing a complex network of multipartite interactions, but the mechanisms whereby they interact are poorly understood. Some fungi, such as the beneficial mycorrhiza-like fungus Serendipita (=Piriformospora) indica, can be helped by bacteria for establishment, survival and colonization. Although this fungus harbors a Rhizobium as an endofungal bacterium, we hypothesized that other bacteria might also establish associations with the fungus and combining S. indica with bacteria might enhance plant growth and health. Methods The interactions among S. indica and four endophytic Proteobacteria belonging to Methylobacterium, Tardiphaga, Rhodanobacter and Trinickia spp. were characterized in vitro and for their effect on tomato growth and biocontrol of Fusarium oxysporum and Rhizoctonia solani. Possible mechanisms behind these interactions were described based on genome and microscopic analyses, using fungal and bacterial strains tagged with fluorescent markers. Results All bacteria stimulated S. indica growth in vitro. Moreover, several of the bacteria stimulated growth of tomato plants, but co-inoculations with S. indica and bacteria did not perform better than single inoculations. Contrarily, combinations of S. indica and bacteria significantly reduced disease progression of fungal pathogens. These microbes seem to cooperate in the process of root colonization for instance by increasing fungal sporulation and hyphae expansion, showing multipartite interaction between microbes and plants. Interestingly, the strain of Trinickia internally colonizes spores of S. indica as an endofungal bacterium during in vitro-co-culturing, suggesting further that the fungus might acquire formerly unrecognized genera of bacteria and genome analysis of the bacteria revealed many genes potentially involved in fungal and plant growth stimulation, biocontrol and root colonization, highlighting putative mechanisms of plant-fungal-bacterial interaction. Conclusions Our study represents an important step towards unraveling the complex interactions among plants, S. indica, endophytic bacteria and fungal pathogens, and indicates that adding bacteria to fungal inoculum could have a remarkable impact on the plant-S. indica symbiosis.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3