Nitrous oxide emissions after struvite application in relation to soil P status

Author:

Yang ZhongchenORCID,Ferron Laura M. E.ORCID,Koopmans Gerwin F.ORCID,Sievernich AngelaORCID,van Groenigen Jan WillemORCID

Abstract

Abstract Purpose Although struvite (MgNH4PO4·6H2O) is mostly considered to be a novel phosphorus (P) fertiliser, it does contain a significant amount of nitrogen (N). Yet, relatively little is known about the soil N dynamics in struvite-amended soils. Here, we focus on how struvite application impacts emissions of the greenhouse gas nitrous oxide (N2O), in relation to soil P status. Methods We conducted a 54-day greenhouse pot experiment on two similar soils with different P status (“low-P soil”; “high-P soil”) seeded with Lolium perenne L. We applied seven fertiliser treatments (Control; Struvite granules; Struvite powder; Urea; Triple superphosphate (TSP); TSP + Struvite granule; TSP + Urea). Except for the unfertilised Control and the TSP treatments, N application rate was 150 kg N‧ha−1. Nitrous oxide (N2O) fluxes, aboveground yield, plant N and P uptake and readily plant-available soil N and P contents were measured. Results In the low-P soil, none of the fertiliser treatments induced a significant increase in N2O emission compared to the control. In the high-P soil, struvite application resulted in lower emissions than urea application, statistically not different from the control treatment. Struvite powder significantly increased both plant N and P uptake compared to granular struvite and the resulting yield was similar to conventional fertilisation (TSP and Urea). Any struvite application also resulted in lower readily plant-available soil nitrate contents than urea. Conclusion Our results suggest that struvite fertilisation can reduce the risk of gaseous N losses without compromising agronomic performance. Pulverizing struvite granules further promotes its dissolution, which could be useful for crops with early nutrient needs.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fate of nitrogen of ammonium phosphate fertilizers: A blind spot;Agricultural & Environmental Letters;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3