Community-specific patterns of nitrogen transformations along an elevational gradient in alpine and subalpine ecosystems

Author:

Rajsz Adam,Wojtuń Bronisław,Samecka-Cymerman Aleksandra

Abstract

AbstractAimsThe aim of the study was to investigate N biogeochemistry of four neighboring, high mountain plant communities and to identify main factors which drive variability among them. We hypothesized that the vegetation types differ in terms of N transformations, and that spatial differentiation of the communities and dominant growth form can reflect an existence of several N-environments along an elevational gradient.MethodsPlant and soil N characteristics were studied in four vegetation types: heathland, scrub, sward and tall forb. Leaf nitrate reductase activity and total N were measured in the dominant species. Soil pH, total C, N, inorganic and dissolved organic N concentrations were measured. The soil net N mineralization rate was examined.ResultsThe DistLM and PERMANOVA analyses revealed that variability among the vegetation types was driven primarily by elevation, soil N–NH4+, soil pH and soil total C. We identified three distinct N-environments along an elevational gradient. The “N-poor alpine” located at the highest altitudes, strongly N-limited and dominated by dwarf-shrub. The "N-mixed subalpine" located in the middle of the gradient and covered by scrub and sward. It was characterized by moderate N turnover rate. The "N-rich subalpine" occurred at lowest locations and was covered by subalpine tall forb community. It exhibited the highest dynamics of N transformations and was rich in inorganic N.ConclusionThree main N-environments were identified: N-poor alpine, N-mixed subalpine, N-rich subalpine. Variability among the vegetation types was driven primarily by elevation, soil N–NH4+, soil pH and soil total C.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3