Brassica napus phyllosphere bacterial composition changes with growth stage

Author:

Bell Jennifer K.ORCID,Helgason Bobbi,Siciliano Steven D.

Abstract

Abstract Aims Phyllosphere bacteria play critical roles in plant growth promotion, disease suppression and global nutrient cycling but remain understudied. Methods In this project, we examined the bacterial community on the phyllosphere of eight diverse lines of Brassica napus for ten weeks in Saskatoon, Saskatchewan Canada. Results The bacterial community was shaped largely by plant growth stage with distinct communities present before and after flowering. Bacterial diversity before flowering had 111 core members with high functional potential, with the peak of diversity being reached during flowering. After flowering, bacterial diversity dropped quickly and sharply to 16 members of the core community, suggesting that the plant did not support the same functional potential anymore. B. napus line had little effect on the larger community, but appeared to have more of an effect on the rare bacteria. Conclusions Our work suggests that the dominant bacterial community is driven by plant growth stage, whereas differences in plant line seemed to affect rare bacteria. The role of these rare bacteria in plant health remains unresolved.

Funder

Canada Excellence Research Chairs, Government of Canada

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3