Abstract
AbstractWe consider the Post–Widder operators of semi-exponential type, which are a generalization of the exponential operators connected with $$x^2$$
x
2
. This modification has the beauty to find difference with other operators, while the original Post–Widder operators do not have such property. We estimate quantitative difference of these operators with Baskakov type operators and Szász–Kantorovich operators, along with some composition of operators. Finally, we further consider a form preserving linear functions and estimate some direct results.
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Abel, U., Gupta, V.: An estimate of the rate of convergence of a Bézier variant of the Baskakov-Kantorovich operators for bounded variation functions. Demonstratio Math. 36(1), 123–136 (2003)
2. Abel, U., Gupta, V., Sisodia, M.: Some new semi-exponential type operators, Revista de la Real Academia de Ciencias Exactas. Físicas y Naturales. Serie A. Matemáticas 116, 87 (2022). https://doi.org/10.1007/s13398-022-01228-2
3. Acu, A.M., Hodiş, A.S., Raşa, I.: A survey on estimates for the differences of positive linear operators. Construct. Math. Anal. 1, 113–127 (2018)
4. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)
5. Gadzhiev, A.D.: Theorems of Korovkin type. Math. Notes 20(5), 995–998 (1676)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. New modification of the Post Widder operators preserving exponential functions;Arab Journal of Basic and Applied Sciences;2024-01-10
2. New operators based on Laguerre polynomials;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-11-02
3. $$\alpha $$-Bernstein-Integral Type Operators;Bulletin of the Iranian Mathematical Society;2023-08-25