Single MCMC chain parallelisation on decision trees

Author:

Drousiotis EfthyvoulosORCID,Spirakis Paul

Abstract

AbstractDecision trees (DT) are highly famous in machine learning and usually acquire state-of-the-art performance. Despite that, well-known variants like CART, ID3, random forest, and boosted trees miss a probabilistic version that encodes prior assumptions about tree structures and shares statistical strength between node parameters. Existing work on Bayesian DT depends on Markov Chain Monte Carlo (MCMC), which can be computationally slow, especially on high dimensional data and expensive proposals. In this study, we propose a method to parallelise a single MCMC DT chain on an average laptop or personal computer that enables us to reduce its run-time through multi-core processing while the results are statistically identical to conventional sequential implementation. We also calculate the theoretical and practical reduction in run time, which can be obtained utilising our method on multi-processor architectures. Experiments showed that we could achieve 18 times faster running time provided that the serial and the parallel implementation are statistically identical.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence

Reference34 articles.

1. Altekar, G., Dwarkadas, S., Huelsenbeck, J.P., Ronquist, F.: Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20(3), 407–415 (2004)

2. Basse, G., Smith, A., Pillai, N.: Parallel Markov chain Monte Carlo via spectral clustering. In: Gretton, A., Robert, C.C. (eds.) Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pp. 1318–1327. Cadiz, Spain, 09–11 May( 2016). PMLR

3. Blanes, S., Casas, F., Sanz-Serna, J.M.: Numerical integrators for the hybrid monte carlo method. SIAM J. Sci. Comput. 36(4), A1556–A1580 (2014)

4. Byrd, J.M.R., Jarvis, S.A, Bhalerao, A.H.: Reducing the run-time of mcmc programs by multithreading on smp architectures. In: 2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8. IEEE ( 2008)

5. Byrd, J.M.R., Jarvis, S.A, Bhalerao, A.H.: Speculative moves: multithreading markov chain monte carlo programs. High-Performance Medical Image Computing and Computer Aided Intervention (HP-MICCAI), pp. 1-8. (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3