1. Agarwal, A., Duchi, J.C.: The generalization ability of online algorithms for dependent data. IEEE Trans. Inf. Theory 59(1), 573–587 (2013)
2. Anava, O., Hazan, E., Mannor, S., Shamir, O.: Online learning for time series prediction. In: Shalev-shwartz, S., Steinwart, I. (eds.) COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14 Princeton University, NJ, USA, volume 30 of JMLR Workshop and Conference Proceedings, pp. 172–184, JMLR.org (2013)
3. Angluin, D., Laird, P.D.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1987)
4. Audiffren, J., Ralaivola, L.: Cornering stationary and restless mixing bandits with remix-ucb. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, pp. 3339–3347, Montreal, Quebec, Canada (2015)
5. Bateman, H.: Higher Transcendental Functions. Krieger Pub Co. ISBN 0898742064 (1981)