Abstract
AbstractIn this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system, which is described by a finite number of attributes and a mapping associating a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees.
Funder
King Abdullah University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Artificial Intelligence
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献