Realtime gray-box algorithm configuration using cost-sensitive classification

Author:

Weiss DimitriORCID,Tierney Kevin

Abstract

AbstractA solver’s runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a formidable challenge, even for fixed problem instance distributions. However, when the instance distribution can change over time, a once effective configuration may no longer provide adequate performance. Realtime algorithm configuration (RAC) offers assistance in finding high-quality configurations for such distributions by automatically adjusting the configurations it recommends based on instances seen so far. Existing RAC methods treat the solver as a black box, meaning the solver is given a configuration as input, and it outputs either a solution or runtime as an objective function for the configurator. However, analyzing intermediate output from the solver can enable configurators to avoid wasting time on poorly performing configurations. We propose a gray-box approach that utilizes intermediate output during evaluation and implement it within the RAC method Contextual Preselection with Plackett-Luce (CPPL blue). We apply cost-sensitive machine learning with pairwise comparisons to determine whether ongoing evaluations can be terminated to free resources. We compare our approach to a black-box equivalent on several experimental settings and show that our approach reduces the total solving time in several scenarios and improves solution quality in an additional scenario.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence

Reference41 articles.

1. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 267–306 (2009)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Principles and Practice of Constraint Programming, pp. 142–157 (2009). https://doi.org/10.1007/978-3-642-04244-7_14

3. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Learning and Intelligent Optimization (LION), pp. 507–523 (2011)

4. Lindauer, M.T., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., Hutter, F.: Smac3: A versatile bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23, 54–1549 (2022)

5. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: International Joint Conferences on Artificial Intelligence Organization (IJCAI) (2015)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3